Cytochrome p450 architecture and cysteine nucleophile placement impact raloxifene-mediated mechanism-based inactivation.
نویسندگان
چکیده
The propensity for cytochrome P450 (P450) enzymes to bioactivate xenobiotics is governed by the inherent chemistry of the xenobiotic itself and the active site architecture of the P450 enzyme(s). Accessible nucleophiles in the active site or egress channels of the P450 enzyme have the potential of sequestering reactive metabolites through covalent modification, thereby limiting their exposure to other proteins. Raloxifene, a drug known to undergo CYP3A-mediated reactive metabolite formation and time-dependent inhibition in vitro, was used to explore the potential for bioactivation and enzyme inactivation of additional P450 enzymes (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A5). Every P450 tested except CYP2E1 was capable of raloxifene bioactivation, based on glutathione adduct formation. However, raloxifene-mediated time-dependent inhibition only occurred in CYP2C8 and CYP3A4. Comparable inactivation kinetics were achieved with K(I) and k(inact) values of 0.26 μM and 0.10 min(-1) and 0.81 μM and 0.20 min(-1) for CYP2C8 and CYP3A4, respectively. Proteolytic digests of CYP2C8 and CYP3A4 Supersomes revealed adducts to Cys225 and Cys239 for CYP2C8 and CYP3A4, respectively. For each P450 enzyme, proposed substrate/metabolite access channels were mapped and active site cysteines were identified, which revealed that only CYP2C8 and CYP3A4 possess accessible cysteine residues near the active site cavities, a result consistent with the observed kinetics. The combined data suggest that the extent of bioactivation across P450 enzymes does not correlate with P450 inactivation. In addition, multiple factors contribute to the ability of reactive metabolites to form apo-adducts with P450 enzymes.
منابع مشابه
Cytochrome P 450 Architecture and Cysteine Nucleophile Placement Impacts Raloxifene Mediated Mechanism
words: 24
متن کاملUse of a multistaged time-dependent inhibition assay to assess the impact of intestinal metabolism on drug-drug interaction potential.
In early discovery, compounds are often eliminated because of their potential to undergo metabolic activation and/or cytochrome P450 time-dependent inactivation (TDI). The blockbuster drug raloxifene is an example of a compound that would have been eliminated in the current paradigm. Despite raloxifene's in vitro bioactivation and TDI of CYP3A4, it is well tolerated in patients with no drug-dru...
متن کاملSuicide inactivation of cytochrome P450 by midchain and terminal acetylenes. A mechanistic study of inactivation of a plant lauric acid omega-hydroxylase.
Incubation of Vicia sativa microsomes, containing cytochrome P450-dependent lauric acid omega-hydroxylase (omega-LAH), with [1-(14)C]11-dodecynoic acid (11-DDYA) generates a major metabolite characterized as 1,12-dodecandioic acid. In addition to time- and concentration-dependent inactivation of lauric acid and 11-DDYA oxidation, irreversible binding of 11-DDYA (200 pmol of 11-DDYA bound/mg of ...
متن کاملMechanism-based inactivation of lung-selective cytochrome P450 CYP2F enzymes.
3-Methylindole (3MI) is a pneumotoxin that requires P450-catalyzed metabolic activation (dehydrogenation), to an electrophilic methylene imine to elicit toxicity. Previous studies have shown that the human pulmonary cytochrome P450 enzyme, CYP2F1, and its goat analog, CYP2F3, catalyzed the dehydrogenation of 3MI. However, it was not known whether the dehydrogenation product could bind to active...
متن کاملMetabolic activation of nevirapine in human liver microsomes: dehydrogenation and inactivation of cytochrome P450 3A4.
Nevirapine, a non-nucleoside HIV-1 reverse transcriptase inhibitor, has been associated with incidences of skin rash and hepatotoxicity in patients. Although the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of nevirapine and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 2012